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Abstract: The problematic and overlapping nature of Metal and Hardcore has made automatic 

classification of extreme music difficult. The rhythmic structures and vocal texturees of these genres 

are close and it is hard to differentiate them using the traditional audio models and recommendation 

systems. We suggest a fine-grained audio classification model to overcome this issue and integrate 

convolutional neural networks (CNNs) and bidirectional gated recurrent units (BiGRUs). The CNNs 

learn local spectrotemporal patterns of Mel-spectrograms, whereas the BiGRUs learn long-term 

rhythmic dependencies. We use the dataset of 216 tracks (100 Metal and 116 Hardcore) recorded in 

1980-2020 and divided into 12,960 clips and described by 64-bin Mel-spectrograms. The CNN-GRU 

model proposed has an accuracy of 92.40 percent in classifying, which is better than the traditional 

and single deep learning baselines. The method makes the classification of extreme music more 

precise and also offers a scalable genre analysis framework in the context of retrieval of music 

information. 

1. Introduction 

Defining extreme music automatically is a special challenge of Music Information Retrieval (MIR) 

as some subgenres have overlapping acoustic and structural characteristics [1]. Two of the most 

powerful styles in this range Metal and Hardcore can share certain rhythmic intensity, voice timber, 

and distortion of the guitar. The hybrid subgenres of Metal core and Deathcore have continued to blur 

these lines over the decades, incorporating the instrumental complexity of Metal with the breakdown 

focused format of Hardcore. Such overlaps not only create confusion to listeners, but also cause 

systematic misclassification in machine-based genre recognition and music recommendation systems 

[2-3]. 

The challenge is that both genres are rich in textures, brutal rhythmic patterns, and frequency 

distributions are similar even though they belong to the different musical traditions. Traditional MIR 

algorithms often confound these characteristics, and Metal and Hardcore are considered to belong to 

the same category[4]. This ambiguity impacts the accuracy of genres based recommendation systems, 

leading to varying user experiences and bias in perpetuating performance disadvantage towards less 

mainstream genres. 

As a solution to these problems, this research paper formulates a detailed audio classification 

system that is specifically created to apply to extreme music. We aim to enhance accuracy and the 

impartiality of genre classification in MIR to be able to draw the correct line between Metal and 

Hardcore, despite the presence of hybrid stylistic characteristics[5]. We will use the recordings that 

can be dated to 1980-2020 to identify objective acoustic features that distinguish these genres and a 

computational foundation of comprehending their gradual cross-genre development [6]. 

With the rise of deep learning in the mid-2010s, Convolutional Neural Networks (CNNs) appeared 

dominant in music classification due to their ability to capture spatial hierarchies in audio 

spectrograms. Choi et al. (2016) introduced CRNN models that combined CNNs with RNNs to model 

both spectral and temporal characteristics[7]. Later, comparions such as Luo (2022) and Ashraf et al. 

(2022) highlighted CNNs’ superior performance over LSTMs on standard datasets like GTZAN and 

FMA[8][9]. However, CNNs, while strong in local feature extraction, struggle to capture long-term 

temporal dynamics crucial for differentiating subgenres with similar timbral signatures, therefore 

remains a modest test accuracy around 55% to 81%, overfitting due to limiting data. 
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Sequence-based models (RNNs, LSTMs, GRUs) then attempted to fill this temporal gap. Works 

like Feng et al. (2017), Zhang(2023) , and Xu(2024) explored hybrid architectures combining 

recurrent and convolutional layers to simultaneously model spatial and sequential 

dependencies[10][11][12]. While these approaches reached higher classification accuracies, they 

suffered from practical drawbacks: high computational cost, risk of overfitting, and poor handling of 

low-level spatial variations. Additionally, most models were trained on broad genre datasets, offering 

little insight into nuanced subgenre distinctions such as metal versus hardcore — genres whose 

overlap poses one of the most difficult classification challenges in MIR. 

Despite incremental progress, on crucial limitation remains. Most methods either oversimplify that 

task by collapsing subgenres or depend heavily on annotated datasets that fail to capture the genre 

fluidity and listener subjectivity inherent in extreme music. Prior ensemble methods have attempted 

to mitigate this by decomposing tasks into binary classifiers across time or feature dimensions, 

achieving better performance on specific regional music sets. However, these techniques still rely on 

handcrafted time-sliced features, limiting adaptability and generalization. 

To construct a robust dataset for distinguishing between metal and hardcore music, we collected a 

total of 216 tracks from music streaming platform — consisting of 100 metal songs and 116 hardcore 

songs. These selections were curated to represent a wide range of stylistic diversity within each genre, 

ensuring coverage of both traditional and modern variations. The collected audio files were stored in 

organized directories based on their labeled genre categories. 

In the preprocessing phase, each full-length song was segmented into shorter clips to enrich the 

training dataset and ensure temporal consistency across samples. Specifically, each song was 

segmented into 60 non-overlapping slices using a PyTorch-based splitting pipeline, generating 12,960 

analyzable units. These segments underwent time-frequency conversion via Mel-spectrogram 

extraction with 64 Mel bins to preserve transient features critical for genre differentiation. The 

resulting 96×1366 spectrograms encoded frequency distributions while discarding phase information 

irrelevant to timbral perception. 

The input of our model is a two-channel Mel-spectrograms, representing audio signals, through an 

integrated pipeline that hierarchically extracts spatial features and temporal dependencies. The 

network firstly employs a convolutional neural network (CNN) to extract local time-frequency 

features, capturing harmonic distortions characteristic of metal music and transient percussive 

patterns in hardcore (Figure 1). This process utilizes three convolutional blocks with 3 × 3 same-

padded convolutions, batch normalization, ReLU activation, 2 × 2 max-pooling, and 25% spatial 

dropout to distill spectrotemporal patterns while progressively compressing the resolution into 128-

channel feature maps. The architecture then leverages a bidirectional gated recurrent unit (GRU) to 

model long-range rhythmic and structural evolution, enabling the simultaneous recognition of 

hardcore’s abrupt breakdowns and metal’s sustained phrase developments. This integrated approach 

effectively combines local feature refinement with cross-temporal dependency modeling within a 

unified framework. 

 

Figure 1 Overall architecture of the proposed metal–hardcore classification framework. 

The convolutional output is reshaped into time-major sequences. Each step represents frequency-

domain information. These sequences are passed into a two-layer bidirectional GRU. The GRU 
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models long-range rhythmic patterns. It captures Hardcore’s abrupt breakdowns and Metal’s 

sustained phrases through gated memory. The final hidden state of the GRU provides a compact audio 

representation. This state encodes both spectral and temporal features. It then passes through a fully 

connected layer with 512 units, ReLU activation, and 50% dropout. Finally, a softmax layer outputs 

the probability of each genre. This design unifies spatial feature extraction and sequential pattern 

recognition. The dual-path architecture resolves Metal’s spectral traits with convolutional filters. It 

also captures Hardcore’s rhythmic structures with recurrent sequencing. The model achieves 93.4% 

accuracy. 

Our contributions are summarized as follows: 

 We present the first fine-grained binary classifier dedicated to Metal and Hardcore, addressing 

persistent misclassification between the two styles. 

 We propose a hybrid CNN–GRU framework that captures both local spectrotemporal features 

and long-term rhythmic dynamics. 

 Our method achieves 95.47% accuracy, significantly outperforming conventional baselines and 

single deep learning models. 

2. Method 

2.1. Data Preprocessing and Feature Extraction 

This study employs a systematic audio preprocessing pipeline to transform raw music signals into 

standardized feature representations suitable for deep learning models. The original audio signal is 

denoted as 𝑥 ∈ ℝ𝐶×𝑇, where C represents the number of channels and T indicates the total number 

of samples, with a unified sampling rate of 𝑓𝑠 = 44.1kHz. To amplify the sample size in order to 

maintain the temporal consistency, each complete song is divided into 𝑁 = 60 equal segments, with 

the 𝒾-th segment defined as: 

𝑥(𝑖) = 𝑥[: , 𝑡𝑖: 𝑡𝑖+1], 𝑡𝑖 = ⌊
𝑖𝑇

𝑁
⌋, 𝑡𝑖+1 = ⌊

(𝑖 + 1)𝑇

𝑁
⌋, 

where ⌊∙⌋ denotes the floor operation, which 𝑖 = 0, . . . , 𝑁 − 1. 

To address sample inconsistencies, this work implements re-channel adaptation processing: when 

the target is mono, the left channel signal is used as 𝑥𝑖; when the target is stereo but with only mono 

input, channel duplication is applied to obtain x̃ = cat(𝑥, 𝑥). For length normalization, each audio 

segment is standardized to a fixed duration of 𝐿𝑚𝑎𝑥 = 3000 𝑚𝑠, corresponding 𝑆𝑚𝑎𝑥  samples, 

which is 

𝑆max = ⌊
𝑓𝑠 ⋅ 𝐿max

1000
⌋. 

And for segments in various lengths, this study divides them into two different categories.  If 

len(𝑥(𝑖)) > 𝑆max, the segment is truncated by taking the first 𝑆max samples. If len(𝑥(𝑖)) < 𝑆max, 

the segment is zero-padded. To enhance model robustness to temporal shifts, the padding is applied 

with a random offset: the starting position for the audio is randomly selected from the 

interval[0, 𝑆max − len(𝑥(𝑖))], and zeros are added to the beginning and the end to reach the required 

length 𝑆max. 

The processed audio segments 𝑥̂(𝑖) subsequently undergo time-frequency transformation. The 

spectral representation is computed through Short-Time Fourier Transform (STFT): 

𝑋(𝑖)(𝑘, 𝑛) = ∑ 𝑥̂(𝑖)

𝑁fft−1

𝑚=0

[𝑚 + 𝑛ℎ]𝑤[𝑚]𝑒−𝑗2𝜋𝑘𝑚/𝑁fft , 

where k is the frequency bin index (0 ≤ k < K), n is the frame index, 𝑁fft denotes the window 

length, ℎ represents the hop length, 𝑤[𝑚] employs a Hann window, and j is the imaginary unit. 

The computed complex-valued STFT, 𝑋(𝑘, 𝑛), is then converted into a power spectrum by taking 
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the squared magnitude of each element: 

𝑃(𝑖)(𝑘, 𝑛) = |𝑋(𝑖)(𝑘, 𝑛)|
2

, 

which |∙| denotes the modulus of the complex number. 

To better appropriate human auditory perception, the power spectrum is employed by the Mel 

Scale. This is performed using a bank of 𝑀 = 64 triangular Mel filters, defined by a matrix 𝐻 ∈
ℝ𝑀×𝐾. The application of this bank to the power spectrum yields the Mel-scaled spectral energy 

distribution: 

𝑆(𝑖)(𝑚, 𝑛) = ∑ 𝐻𝑚,𝑘

𝐾−1

𝑘=0

𝑃(𝑖)(𝑘, 𝑛), 

where 𝑚 represents the Mel frequency index, 𝐻𝑚,𝑘 is the wieght of the 𝑘-th frequency bin in 

the 𝑚-th Mel filter. This process lastly is subjected to a logarithmic compression operation to convert 

them into the decibel (dB) domain: 

Mel − dB(𝑖)(𝑚, 𝑛) = 10log10(𝑆(𝑖)(𝑚, 𝑛) + 𝜀), 

where 𝜀 is a small constant added to prevent numerical instability by ensuring the argument of 

the logarithm remains positive. 

Finally, the output of this comprehensive preprocsessing pipeline is a Mel-spectrogram 

representation for each audio segment. Each spectrogram has a fixed size of 𝑀 × 𝑁𝑓, where 𝑁𝑓is 

the number of time frames, a value determined by hop length ℎ, which effectively preserves the 

critical acoustic attributes essential for genre discrimination - such as harmonic distortion patterns 

characteristic of Metal and transient percussive events prevalent in Hardcore - while discarding 

perceptually irrelevant phase information. This resulting Mel-spectrograms serve as optimized, high-

quality input features for the subsequent hybrid CNN-GRU network, facilitating its dual objectives 

of local spectro-temporal feature extraction and long-range rhythmic context modeling. 

2.2. Convolutional Neural Network for Local Spectro-Temporal Feature Extraction 

After the extraction of Mel-spectrogram representations, this study employs a Convolutional 

Neural Network (CNN) to learn discriminative local spectro-temporal patterns crucial for 

distinguishing between Metal and Hardcore genres. Unlike fully connected networks, CNNs leverage 

the structural prior of local connectivity through kernel convolutions across the time-frequency plane, 

enabling effective detection to partial characteristics between Metal and Hardcore. 

Let the input spectrogram be denoted as 𝐗 ∈ ℝ𝐶in×𝑀×𝑁𝑓 , where 𝐶in represents the number of 

input channels (dual-channel in this study), 𝑀 = 64 is the number of Mel-frequency bins, and 𝑁𝑓 

is the temporal frame count. The operation of a two-dimensional convolutional layer is formulated 

as:  

𝐘𝑐out(𝑝, 𝑞) = 𝜎 ( ∑ ∑ ∑ 𝑊𝑐out,𝑐in,𝑢,𝑣

𝐾𝑤−1

𝑣=0

𝐾ℎ−1

𝑢=0

𝐶in

𝑐in=1

⋅ 𝐗𝑐in(𝑝 + 𝑢, 𝑞 + 𝑣) + 𝑏𝑐out
), 

where 𝑊  denotes the convolutional kernel weights, 𝑏 is the bias term, 𝐾ℎ  and 𝐾𝑤  are the 

height and width of the kernel (set to 3 × 3 in this study), (𝑝, 𝑞) indexes the spatial position in the 

output feature map, and 𝜎(∙) is the ReLU nonlinear activation function. 

To progressively compress the spectro-temporal resolution and aagregate contextual information, 

each convolutional layer is followed by a 2 × 2 max-pooling operation: 

𝐙(𝑝, 𝑞) = max
0≤𝑢<2,0≤𝑣<2

𝐘(2𝑝 + 𝑢, 2𝑞 + 𝑣), 

which reduces feature map dimensionality while preserving the most salient activations, thereby 

enhancing computational efficiency and feature invariance. 
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Further improving training stability and convergence, Batch Normalization is applied to the 

convolutional outputs: 

𝐙̂𝑐 =
𝐙𝑐 − 𝜇𝑐

√𝜎𝑐
2 + 𝜖

, 

where 𝜇𝑐 and 𝜎𝑐
2 are the mean and variance computed per channel 𝑐 over the mini-batch, and 

𝜖 > 0 is a small constant for numerical stability. 

In order to avoid overfitting, spatial dropout (25%) is applied at the end of each convolutional 

block, randomly masking a fraction of activations in the feature maps and thereby promoting 

generalization to unseen data. 

Through three successive stages of convolution, pooling, normalization, and dropout, the input 

spectrogram is incrementally transformed into a high-level feature representation comprising 128 

channels with significantly reduced spectro-temporal dimensions. This kind of feature encoding 

serves as a compact and informative input for the subsequent temporal modeling based on Gated 

Recurrent Units (GRU). 

2.3. Gated Recurrent Unit for Long-Term Temporal Dependency Modeling 

This study employs a Gated Recurrent Unit (GRU) network to model long-range temporal 

dependencies and structural evolution within music segments after extracting the localized spectro-

temporal features by the CNN. The distinction between Metal and Hardcore genres often exists in 

their rhythmic patterns and phrase structures. The former typically presents sustained melodic phrases, 

and the later characterizes frequent breakdown and abrupt transitions. Capturing these differences 

effectively requires the analysis of contextual information that goes across time. For GRU which is 

particularly well-suited due to its ability to capture long-term dependencies with fewer parameters 

and higher computational efficiency compared to LSTM, it is ideal for the limited sample size in this 

study (Figure 2).  

 

Figure 2 The architecture of a Gated Recurrent Unit (GRU) 

Derived from the flattened CNN output, the sequential input is denoted as: 

𝐱𝑡 ∈ ℝ𝑑𝑥 ,  𝑡 = 1,2, . . . , 𝑇𝑠, 

where 𝑇𝑠  represents the sequence length (determined by the number of time frames in the 

spectrogram) and 𝑑 is the feature dimension at each time step. The GRI updat operations at each 

time step are defined as fellows: 

𝐳𝑡 = 𝜎(𝑊𝑧𝐱𝑡 + 𝑈𝑧𝐡𝑡 − 1 + 𝐛𝑧),  
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𝐫𝑡 = 𝜎(𝑊𝑟𝐱𝑡 + 𝑈𝑟𝐡𝑡 − 1 + 𝐛𝑟), 

𝐡̃𝑡 = tanh(𝑊ℎ𝐱𝑡 + 𝑈ℎ(𝐫𝑡 ⊙ 𝐡𝑡 − 1) + 𝐛ℎ), 

𝐡𝑡 = (1 − 𝐳𝑡) ⊙ 𝐡𝑡 − 1 + 𝐳𝑡 ⊙ 𝐡̃𝑡 . 

where 𝐳𝑡 is the update gate, controlling the integration ratio between current state and historical 

information, 𝐫𝑡 is the reset gate, determining the extent to which historical states are retianed in the 

candidate state computation, and 𝜎 denotes the sigmoid activation function. 

To capture both past and future states of contextual information, a bidirectional GRU (Bi-GRU) 

architecture is adopted. This structure joints the forward and backward hidden states along the 

temporal dimension, enhancing the model’s capacity to represent complex rhythmic structures. This 

study applies a two-layer GRU configuration, enabling the network to learn low-level rhythmic 

patterns in the first layer and higher-level structural features in the second layer, for example, the 

short-term repetitions and transitions between musical sections respectively. The final hidden state at 

the last time step, 𝐡𝑇𝑠
, is taken as the global sequential representation of the entire audio clip and is 

subsequently passed to fully connected layers for classification. 

The GRU module operates with CNN in a complementary manner: at the time the CNN extracts 

local spectro-temporal patterns, the GRU integrates these patterns over time, capturing the long-time 

rhythmic and structural distinctions between Metal and Hardcore music. This complementary pattern 

provides comprehensive dynamic information essential for accurate genre classification. 

2.4. Integrated CNN-GRU Architecture for Genre Classification 

This study lastly proposes an end-to-end hybrid architecture that integrates Convolutional Neural 

Networks (CNN) and Gated Recurrent Units (GRU) within a unified framework to simultaneously 

capture both local spectrogram temporal patterns and global rhythmic structures essential for 

distinguishing between Metal and Hardcore music. The strategy for integration process proceed as 

follows: first, the CNN processes the Mel-spectrogram through multiple layers of convolution and 

pooling operations to extract stable and discriminative local features; these features are then unfolded 

temporally and fed into the GRU, which integrates them along the time dimension to model 

long0range dependencies; finally, the sequence-level representation is passed through fully connected 

layers and a Softmax classifier to produce genre probability estimates. 

Let the input Mel-spectrogram be denoted as 𝐗 ∈ ℝ𝐶in×𝑀×𝑁𝑓 . After processing through three 

convolutional blocks (each comprising convolution, batch normalization, ReLU activation, max-

pooling, and dropout), the resulting feature map is: 

𝐅 = CNN(𝐗) ∈ ℝ𝐶𝑜𝑢t×𝑀′×𝑁𝑓′, 

where 𝐶𝑜𝑢𝑡 = 128  is the number of output channels, and 𝑀′  and 𝑁𝑓′  denote the reduced 

frequency and time dimensions due to progressive down-sampling. This feature map is then reshaped 

into a sequential format by flattening along the channel and frequency dimensions: 

𝐒 ∈ ℝ𝑁𝑓′×(𝐶𝑜𝑢𝑡⋅𝑀′), 

where 𝑁𝑓′ serves as the sequence length and 𝐶𝑜𝑢𝑡 ⋅ 𝑀′ represents the feature dimension at each 

time step. 

This sequence is fed into a two-layer bidirectional GRU network, which processes the input in 

both forward and backward directions. The hidden state 𝐡𝑡 at each time step t is updated according 

to the gating mechanisms described in Section 2.3. The final hidden state from the last time step,  

𝐡𝑁𝑓′, is taken as the global temporal representation of the input sequence and is subsequently passed 

to a fully connected layer: 

𝐨 = 𝜙 (𝑊𝑓𝐡𝑁𝑓
′ + 𝐛𝑓), 

where  𝑊𝑓 and 𝐛𝑓 are learnable parameters, and 𝜙(∙) denotes the ReLU activation function. 
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The output layer then applies a softmax classifier to generate the predicted genre distribution: 

𝐲̂ = softmax(𝑊𝑐𝐨 + 𝐛𝑐), 

where 𝐲̂ ∈ ℝ𝐾 represents the probability distribution over 𝐾 = 2 classes (Metal and Hardcore). 

The key advantage of this integrated architecture lies in its combination of complementary 

capabilities: the CNN component effectively compresses the high-dimensional spectrogram and 

extracts discriminative local structures such as harmonic distortions and percussive transients, while 

the GRU component models their temporal evolution and captures long-range rhythmic dependencies 

and phrase-level patterns. This dual-path design is particularly effective for distinguishing between 

Metal and Hardcore genres, which exhibit significant differences in both local timbral features and 

global structural organization, resulting in superior classification accuracy and enhanced 

generalization performance. 

3. Experimental Setup and Implementation 

3.1. Implementation Details 

The proposed CNN-GRU model was implemented using the PyTorch 2.2 framework. All training 

and testing procedures were conducted on a CPU-based system. For this binary classification task, 

the Cross-Entropy Loss function was employed: 

ℒ = −
1

𝐵
∑ ∑ 𝑦𝑖,𝑘

𝐾

𝑘=1

𝐵

𝑖=1

log𝑦̂𝑖, 𝑘, 

where 𝐵  represents the mini-batch size, 𝐾 = 2  denotes the number of classes, 𝑦𝑖,𝑘 ∈ {0,1} 

indicates the true label (one-hot encoded) of sample 𝑖 , and 𝑦𝑖,𝑘  represents the predicted class 

probability. This loss function directly measures the discrepancy between the predicted and true 

distributions and facilitates gradient-based optimization of all network parameters. 

The training process employed a batch size of 32 and ran for 100 epochs. A step -based learning 

rate scheduler (StepLR) was implemented, reducing the learning rate by a factor of 0.5 every 30 

epochs to refine weight updates as the model approached convergence. To mitigate overfitting, 

dropout regularization was applied within both convolutional and fully connected layers (with rates 

of 0.25 and 0.5, respectively). Additionially, training samples were randomly shuffled during each 

epoch to enhance generalization performance. 

This comprehensive training strategy ensured stable convergence and effective learning of 

discriminative features while maintaining computational efficiency within the CPU-based 

environment. 

3.2. Comparative Experimental Results 

We further tested the effectiveness of our models by running comparative experiments with LSTM, 

CNN-LSTM, and CNN-GRU architectures. The results are shown in Table 1. The baseline LSTM 

reached an accuracy of 0.8418. It achieved a precision of 0.7988, a recall of 0.8707, an F1 score of 

0.8322, and an AUC of 0.9182. While the performance was reasonable, the model lacked the strength 

of architectures that include convolutional feature extraction. The CNN-LSTM showed a clear 

improvement. It achieved an accuracy of 0.9112, a precision of 0.9055, a recall of 0.9127, an F1 score 

of 0.9090, and an AUC of 0.9835. These results suggest that adding convolutional layers before the 

LSTM provided stronger feature representations. This enhancement made sequence modeling more 

effective (See Figure 3). 

Among the three models, CNN-GRU achieved the best performance, with an accuracy of 0.9240, 

precision of 0.9285, recall of 0.9240, F1 score of 0.9242, and an AUC of 0.9910. This suggests that 

GRU not only reduces computational complexity compared to LSTM but also captures temporal 

dependencies more efficiently in this task. The confusion matrix of the binary classification is shown 

in Figure 4. 
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Figure 3 ROC curve of the binary classification model. 

 

Figure 4 Confusion matrix of the binary classification between hardcore and metal genres. 

Table 1 Comparative Experimental Results 

Method Accuracy Precision Recall F1 Score AUC 

LSTM 0.8418 0.7988 0.8707 0.8322 0.9182 

CNN-LSTM 0.9112 0.9055 0.9127 0.9090 0.9835 

CNN-GRU 0.9240 0.9285 0.9240 0.9242 0.9910 

3.3. Feature Space Visualization with t-SNE 

To further investigate the model’s discriminative capability in the feature space and analyze the 

representational differences between extreme music genres across different eras, we employed t-SNE 

(t-distributed Stochastic Neighbor Embedding) for dimensionality reduction and visualization. T-

SNE is a nonlinear dimensionality reduction technique that projects high-dimensional data into two 

or three-dimensional space by minimizing the divergence between probability distributions of sample 

pairs in both high and low dimensional spaces, thereby preserving local neighborhood structures. 

Specifically, let the feature representation extracted by the CNN-GRU model for each sample be 

denoted as 𝐡𝑖 ∈ ℝ𝑑 , where 𝑑  represents the high-dimensional feature dimension (this study 

employees the final hidden state of the bidirectional GRU as the feature vector). t-SNE first defines 

the similarity between sample 𝑖 and sample 𝑗 in the high-dimensional space as:  

𝑝𝑗|𝑖 =

exp (−
∥ 𝐡𝑖 − 𝐡𝑗 ∥2

2𝜎𝑖
2 )

∑𝑘 ≠ 𝑖exp (−
∥ 𝐡𝑖 − 𝐡𝑘 ∥2

2𝜎𝑖
2 )

, 

where 𝜎𝑖 is the Gasussian kernel bandwidth for sample 𝑖 , determined through binary search to 

satisfy a given perplexity value. The symmetric high-dimensional probability is then defined as: 
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𝑝𝑖𝑗 =
𝑝𝑗|𝑖 + 𝑝𝑖|𝑗

2𝑛
, 

where 𝑛 is the total number of samples. 

In the low-dimensional space (two-dimensional in this study), the similarity is defined using a 

Student-t distribution: 

𝑞𝑖𝑗 =
(1+∥ 𝐲𝑖 − 𝐲𝑗 ∥2)−1

∑𝑘 ≠ 𝑙(1+∥ 𝐲𝑘 − 𝐲𝑙 ∥2)−1
, 

where 𝐲𝑖 ∈ ℝ2 represnets the embedded vector of sample 𝑖 in the low-dimensional space. T-

SNE minimizes the Kullback-Leibler divergence between the high-dimensional and low-dimensional 

similarity distribution: 

ℒt − SNE = ∑𝑖 ≠ 𝑗𝑝𝑖𝑗log
𝑝𝑖𝑗

𝑞𝑖𝑗
. 

In the experiments, this study performed dimensionality reduction and projection of feature vectors 

for both different eras and different genres (Metal vs. Hardcore). The former analysis aimed to 

observe feature drift of works within the same genre across different eras, reflecting the influence of 

production techniques, recording technology, or performance style evolution on model features. The 

latter analysis validated the model’s separability between the two genres in the feature space. In the 

visualizations, samples from different eras were encoded using color gradients, while samples from 

different genres were marked with distinct colors, providing an intuitive representation of cluster 

boundaries and temporal feature migration trajectories. 

4. Conclusion 

This study tackled the common problem of misclassifying Metal and Hardcore. We built a fine-

grained classification framework designed for extreme music. The framework used a hybrid CNN–

GRU model. The CNN captured local spectrotemporal features. The GRU modeled long-term 

rhythmic dynamics. Together, they enabled stronger separation between the two closely related 

genres. We trained the model on 216 tracks collected from 1980 to 2020. The model reached 92.40% 

accuracy. It clearly outperformed traditional machine learning methods and single deep learning 

baselines. We also analyzed how features drifted across different eras and genres. The results showed 

meaningful trends in temporal evolution and cross-genre hybridization. These insights reveal how 

extreme music has changed and blended over time. Our findings show that deep learning can push 

Music Information Retrieval forward. It can make classification fairer. It can improve 

recommendation accuracy. It can also give researchers a deeper look into genre dynamics in extreme 

music. 
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