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Abstract: The problematic and overlapping nature of Metal and Hardcore has made automatic
classification of extreme music difficult. The rhythmic structures and vocal texturees of these genres
are close and it is hard to differentiate them using the traditional audio models and recommendation
systems. We suggest a fine-grained audio classification model to overcome this issue and integrate
convolutional neural networks (CNNSs) and bidirectional gated recurrent units (BiGRUs). The CNNs
learn local spectrotemporal patterns of Mel-spectrograms, whereas the BiGRUs learn long-term
rhythmic dependencies. We use the dataset of 216 tracks (100 Metal and 116 Hardcore) recorded in
1980-2020 and divided into 12,960 clips and described by 64-bin Mel-spectrograms. The CNN-GRU
model proposed has an accuracy of 92.40 percent in classifying, which is better than the traditional
and single deep learning baselines. The method makes the classification of extreme music more
precise and also offers a scalable genre analysis framework in the context of retrieval of music
information.

1. Introduction

Defining extreme music automatically is a special challenge of Music Information Retrieval (MIR)
as some subgenres have overlapping acoustic and structural characteristics [1]. Two of the most
powerful styles in this range Metal and Hardcore can share certain rhythmic intensity, voice timber,
and distortion of the guitar. The hybrid subgenres of Metal core and Deathcore have continued to blur
these lines over the decades, incorporating the instrumental complexity of Metal with the breakdown
focused format of Hardcore. Such overlaps not only create confusion to listeners, but also cause
systematic misclassification in machine-based genre recognition and music recommendation systems
[2-3].

The challenge is that both genres are rich in textures, brutal rhythmic patterns, and frequency
distributions are similar even though they belong to the different musical traditions. Traditional MIR
algorithms often confound these characteristics, and Metal and Hardcore are considered to belong to
the same category[4]. This ambiguity impacts the accuracy of genres based recommendation systems,
leading to varying user experiences and bias in perpetuating performance disadvantage towards less
mainstream genres.

As a solution to these problems, this research paper formulates a detailed audio classification
system that is specifically created to apply to extreme music. We aim to enhance accuracy and the
impartiality of genre classification in MIR to be able to draw the correct line between Metal and
Hardcore, despite the presence of hybrid stylistic characteristics[5]. We will use the recordings that
can be dated to 1980-2020 to identify objective acoustic features that distinguish these genres and a
computational foundation of comprehending their gradual cross-genre development [6].

With the rise of deep learning in the mid-2010s, Convolutional Neural Networks (CNNs) appeared
dominant in music classification due to their ability to capture spatial hierarchies in audio
spectrograms. Choi et al. (2016) introduced CRNN models that combined CNNs with RNNs to model
both spectral and temporal characteristics[7]. Later, comparions such as Luo (2022) and Ashraf et al.
(2022) highlighted CNNs’ superior performance over LSTMs on standard datasets like GTZAN and
FMATI8][9]. However, CNNs, while strong in local feature extraction, struggle to capture long-term
temporal dynamics crucial for differentiating subgenres with similar timbral signatures, therefore
remains a modest test accuracy around 55% to 81%, overfitting due to limiting data.

Copyright © (2025) Francis Academic Press, UK 191 DOI: 10.25236/iwmecs.2025.023



Sequence-based models (RNNs, LSTMs, GRUSs) then attempted to fill this temporal gap. Works
like Feng et al. (2017), Zhang(2023) , and Xu(2024) explored hybrid architectures combining
recurrent and convolutional layers to simultaneously model spatial and sequential
dependencies[10][11][12]. While these approaches reached higher classification accuracies, they
suffered from practical drawbacks: high computational cost, risk of overfitting, and poor handling of
low-level spatial variations. Additionally, most models were trained on broad genre datasets, offering
little insight into nuanced subgenre distinctions such as metal versus hardcore — genres whose
overlap poses one of the most difficult classification challenges in MIR.

Despite incremental progress, on crucial limitation remains. Most methods either oversimplify that
task by collapsing subgenres or depend heavily on annotated datasets that fail to capture the genre
fluidity and listener subjectivity inherent in extreme music. Prior ensemble methods have attempted
to mitigate this by decomposing tasks into binary classifiers across time or feature dimensions,
achieving better performance on specific regional music sets. However, these techniques still rely on
handcrafted time-sliced features, limiting adaptability and generalization.

To construct a robust dataset for distinguishing between metal and hardcore music, we collected a
total of 216 tracks from music streaming platform — consisting of 100 metal songs and 116 hardcore
songs. These selections were curated to represent a wide range of stylistic diversity within each genre,
ensuring coverage of both traditional and modern variations. The collected audio files were stored in
organized directories based on their labeled genre categories.

In the preprocessing phase, each full-length song was segmented into shorter clips to enrich the
training dataset and ensure temporal consistency across samples. Specifically, each song was
segmented into 60 non-overlapping slices using a PyTorch-based splitting pipeline, generating 12,960
analyzable units. These segments underwent time-frequency conversion via Mel-spectrogram
extraction with 64 Mel bins to preserve transient features critical for genre differentiation. The
resulting 961366 spectrograms encoded frequency distributions while discarding phase information
irrelevant to timbral perception.

The input of our model is a two-channel Mel-spectrograms, representing audio signals, through an
integrated pipeline that hierarchically extracts spatial features and temporal dependencies. The
network firstly employs a convolutional neural network (CNN) to extract local time-frequency
features, capturing harmonic distortions characteristic of metal music and transient percussive
patterns in hardcore (Figure 1). This process utilizes three convolutional blocks with 3 x 3 same-
padded convolutions, batch normalization, ReLU activation, 2 x 2 max-pooling, and 25% spatial
dropout to distill spectrotemporal patterns while progressively compressing the resolution into 128-
channel feature maps. The architecture then leverages a bidirectional gated recurrent unit (GRU) to
model long-range rhythmic and structural evolution, enabling the simultaneous recognition of
hardcore’s abrupt breakdowns and metal’s sustained phrase developments. This integrated approach
effectively combines local feature refinement with cross-temporal dependency modeling within a
unified framework.
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Figure 1 Overall architecture of the proposed metal-hardcore classification framework.

The convolutional output is reshaped into time-major sequences. Each step represents frequency-
domain information. These sequences are passed into a two-layer bidirectional GRU. The GRU
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models long-range rhythmic patterns. It captures Hardcore’s abrupt breakdowns and Metal’s
sustained phrases through gated memory. The final hidden state of the GRU provides a compact audio
representation. This state encodes both spectral and temporal features. It then passes through a fully
connected layer with 512 units, ReLU activation, and 50% dropout. Finally, a softmax layer outputs
the probability of each genre. This design unifies spatial feature extraction and sequential pattern
recognition. The dual-path architecture resolves Metal’s spectral traits with convolutional filters. It
also captures Hardcore’s rhythmic structures with recurrent sequencing. The model achieves 93.4%
accuracy.
Our contributions are summarized as follows:
» We present the first fine-grained binary classifier dedicated to Metal and Hardcore, addressing
persistent misclassification between the two styles.
» We propose a hybrid CNN-GRU framework that captures both local spectrotemporal features
and long-term rhythmic dynamics.
» Our method achieves 95.47% accuracy, significantly outperforming conventional baselines and
single deep learning models.

2. Method
2.1. Data Preprocessing and Feature Extraction

This study employs a systematic audio preprocessing pipeline to transform raw music signals into
standardized feature representations suitable for deep learning models. The original audio signal is
denoted as x € R¢*T, where C represents the number of channels and T indicates the total number
of samples, with a unified sampling rate of f, = 44.1kHz. To amplify the sample size in order to
maintain the temporal consistency, each complete song is divided into N = 60 equal segments, with
the 4-th segment defined as:

. iT (i+ 1T
xW =x[i, titpq], 4= lﬁ]» lit1 = lTJ'

where |-] denotes the floor operation, which i =0,...,N — 1.

To address sample inconsistencies, this work implements re-channel adaptation processing: when
the target is mono, the left channel signal is used as x;; when the target is stereo but with only mono
input, channel duplication is applied to obtain X = cat(x, x). For length normalization, each audio
segment is standardized to a fixed duration of L,,,, = 3000 ms, corresponding S,,,, Samples,
which is

S _ fs ’ Lmax
max 1000
And for segments in various lengths, this study divides them into two different categories. If

len(x@) > Sp.x, the segment is truncated by taking the first Sy, samples. If len(x®) < Sp.,,

the segment is zero-padded. To enhance model robustness to temporal shifts, the padding is applied
with a random offset: the starting position for the audio is randomly selected from the
interval[0, Sy,ax — len(x(®)], and zeros are added to the beginning and the end to reach the required
length Sphax-
The processed audio segments £ subsequently undergo time-frequency transformation. The

spectral representation is computed through Short-Time Fourier Transform (STFT):

Ngge—1

XD (k,n) = Z 2@ [m + nhlw[m]e/2mkm/Nist,
m=0

where Kk is the frequency bin index (0 < k < K), n is the frame index, N denotes the window
length, h represents the hop length, w[m] employs a Hann window, and j is the imaginary unit.
The computed complex-valued STFT, X(k,n), is then converted into a power spectrum by taking
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the squared magnitude of each element:
PO(k,n) = [XO k)",

which |-| denotes the modulus of the complex number.

To better appropriate human auditory perception, the power spectrum is employed by the Mel
Scale. This is performed using a bank of M = 64 triangular Mel filters, defined by a matrix H €
RM>*K_The application of this bank to the power spectrum yields the Mel-scaled spectral energy
distribution:

K-1
SO(m,n) = Z Hpp o POk, ),
k=0

where m represents the Mel frequency index, H,, is the wieght of the k-th frequency bin in

the m-th Mel filter. This process lastly is subjected to a logarithmic compression operation to convert
them into the decibel (dB) domain:

Mel — dB®W (m, n) = 10log,(SW(m,n) + ¢),

where ¢ is a small constant added to prevent numerical instability by ensuring the argument of
the logarithm remains positive.

Finally, the output of this comprehensive preprocsessing pipeline is a Mel-spectrogram
representation for each audio segment. Each spectrogram has a fixed size of M X N¢, where Nis
the number of time frames, a value determined by hop length h, which effectively preserves the
critical acoustic attributes essential for genre discrimination - such as harmonic distortion patterns
characteristic of Metal and transient percussive events prevalent in Hardcore - while discarding
perceptually irrelevant phase information. This resulting Mel-spectrograms serve as optimized, high-
quality input features for the subsequent hybrid CNN-GRU network, facilitating its dual objectives
of local spectro-temporal feature extraction and long-range rhythmic context modeling.

2.2. Convolutional Neural Network for Local Spectro-Temporal Feature Extraction

After the extraction of Mel-spectrogram representations, this study employs a Convolutional
Neural Network (CNN) to learn discriminative local spectro-temporal patterns crucial for
distinguishing between Metal and Hardcore genres. Unlike fully connected networks, CNNs leverage
the structural prior of local connectivity through kernel convolutions across the time-frequency plane,
enabling effective detection to partial characteristics between Metal and Hardcore.

Let the input spectrogram be denoted as X € R¢in*M*Ns - where C;, represents the number of
input channels (dual-channel in this study), M = 64 is the number of Mel-frequency bins, and Ny
is the temporal frame count. The operation of a two-dimensional convolutional layer is formulated
as:

Cin Kn—1Kp-1

Ycout(p,q) = o Z Z Z Weouocimuy * Xcin(p +u,q +v) + b, |

Cin=1 u=0 v=0

where W denotes the convolutional kernel weights, b is the bias term, K, and K, are the
height and width of the kernel (setto 3 x 3 in this study), (p,q) indexes the spatial position in the
output feature map, and o(*) is the ReLU nonlinear activation function.
To progressively compress the spectro-temporal resolution and aagregate contextual information,
each convolutional layer is followed by a 2 X 2 max-pooling operation:
Z(p,q) = max Y(Q@2p+u,2q-+v),

0=<su<2,0sv<2

which reduces feature map dimensionality while preserving the most salient activations, thereby
enhancing computational efficiency and feature invariance.
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Further improving training stability and convergence, Batch Normalization is applied to the
convolutional outputs:

7 = L. — ¢ :
JoZ+e

where u. and o2 are the mean and variance computed per channel ¢ over the mini-batch, and
e > 0 is asmall constant for numerical stability.

In order to avoid overfitting, spatial dropout (25%) is applied at the end of each convolutional
block, randomly masking a fraction of activations in the feature maps and thereby promoting
generalization to unseen data.

Through three successive stages of convolution, pooling, normalization, and dropout, the input
spectrogram is incrementally transformed into a high-level feature representation comprising 128
channels with significantly reduced spectro-temporal dimensions. This kind of feature encoding

serves as a compact and informative input for the subsequent temporal modeling based on Gated
Recurrent Units (GRU).

2.3. Gated Recurrent Unit for Long-Term Temporal Dependency Modeling

This study employs a Gated Recurrent Unit (GRU) network to model long-range temporal
dependencies and structural evolution within music segments after extracting the localized spectro-
temporal features by the CNN. The distinction between Metal and Hardcore genres often exists in
their rhythmic patterns and phrase structures. The former typically presents sustained melodic phrases,
and the later characterizes frequent breakdown and abrupt transitions. Capturing these differences
effectively requires the analysis of contextual information that goes across time. For GRU which is
particularly well-suited due to its ability to capture long-term dependencies with fewer parameters
and higher computational efficiency compared to LSTM, it is ideal for the limited sample size in this
study (Figure 2).
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Figure 2 The architecture of a Gated Recurrent Unit (GRU)
Derived from the flattened CNN output, the sequential input is denoted as:
X, ER%™, t=1.2,...,T,

where T, represents the sequence length (determined by the number of time frames in the
spectrogram) and d is the feature dimension at each time step. The GRI updat operations at each
time step are defined as fellows:

z, =oc(W,xt+U,ht —1+b,),
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r, =oc(Wxt+Uht —1+Db,),
Ilt = tanh(WhXt + Uh(l‘t O ht — 1) + bh)'

where z, is the update gate, controlling the integration ratio between current state and historical
information, r; is the reset gate, determining the extent to which historical states are retianed in the
candidate state computation, and ¢ denotes the sigmoid activation function.

To capture both past and future states of contextual information, a bidirectional GRU (Bi-GRU)
architecture is adopted. This structure joints the forward and backward hidden states along the
temporal dimension, enhancing the model’s capacity to represent complex rhythmic structures. This
study applies a two-layer GRU configuration, enabling the network to learn low-level rhythmic
patterns in the first layer and higher-level structural features in the second layer, for example, the
short-term repetitions and transitions between musical sections respectively. The final hidden state at
the last time step, hr, is taken as the global sequential representation of the entire audio clip and is
subsequently passed to fully connected layers for classification.

The GRU module operates with CNN in a complementary manner: at the time the CNN extracts
local spectro-temporal patterns, the GRU integrates these patterns over time, capturing the long-time
rhythmic and structural distinctions between Metal and Hardcore music. This complementary pattern
provides comprehensive dynamic information essential for accurate genre classification.

2.4. Integrated CNN-GRU Architecture for Genre Classification

This study lastly proposes an end-to-end hybrid architecture that integrates Convolutional Neural
Networks (CNN) and Gated Recurrent Units (GRU) within a unified framework to simultaneously
capture both local spectrogram temporal patterns and global rhythmic structures essential for
distinguishing between Metal and Hardcore music. The strategy for integration process proceed as
follows: first, the CNN processes the Mel-spectrogram through multiple layers of convolution and
pooling operations to extract stable and discriminative local features; these features are then unfolded
temporally and fed into the GRU, which integrates them along the time dimension to model
longOrange dependencies; finally, the sequence-level representation is passed through fully connected
layers and a Softmax classifier to produce genre probability estimates.

Let the input Mel-spectrogram be denoted as X € R¢n*M>*Ns  After processing through three
convolutional blocks (each comprising convolution, batch normalization, ReLU activation, max-
pooling, and dropout), the resulting feature map is:

F = CNN(X) € RCoutXM'xNys/.

where C,,; = 128 is the number of output channels, and M’ and N’ denote the reduced

frequency and time dimensions due to progressive down-sampling. This feature map is then reshaped
into a sequential format by flattening along the channel and frequency dimensions:

= RNfrx(Cout-M’)’

where N’ serves as the sequence length and C,,,. - M’ represents the feature dimension at each

time step.

This sequence is fed into a two-layer bidirectional GRU network, which processes the input in
both forward and backward directions. The hidden state h, at each time step t is updated according
to the gating mechanisms described in Section 2.3. The final hidden state from the last time step,
hy o is taken as the global temporal representation of the input sequence and is subsequently passed

to a fully connected layer:
0=¢ (thN} + bf),

where W and b, are learnable parameters, and ¢ () denotes the ReLU activation function.
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The output layer then applies a softmax classifier to generate the predicted genre distribution:
y = softmax(W,0 + b,),

where § € RX represents the probability distribution over K = 2 classes (Metal and Hardcore).

The key advantage of this integrated architecture lies in its combination of complementary
capabilities: the CNN component effectively compresses the high-dimensional spectrogram and
extracts discriminative local structures such as harmonic distortions and percussive transients, while
the GRU component models their temporal evolution and captures long-range rhythmic dependencies
and phrase-level patterns. This dual-path design is particularly effective for distinguishing between
Metal and Hardcore genres, which exhibit significant differences in both local timbral features and
global structural organization, resulting in superior classification accuracy and enhanced
generalization performance.

3. Experimental Setup and Implementation
3.1. Implementation Details

The proposed CNN-GRU model was implemented using the PyTorch 2.2 framework. All training
and testing procedures were conducted on a CPU-based system. For this binary classification task,
the Cross-Entropy Loss function was employed:

1 B K
L= yyloggik,

i=1 k=1

where B represents the mini-batch size, K = 2 denotes the number of classes, y;, € {0,1}
indicates the true label (one-hot encoded) of sample i, and y;, represents the predicted class
probability. This loss function directly measures the discrepancy between the predicted and true
distributions and facilitates gradient-based optimization of all network parameters.

The training process employed a batch size of 32 and ran for 100 epochs. A step -based learning
rate scheduler (StepLR) was implemented, reducing the learning rate by a factor of 0.5 every 30
epochs to refine weight updates as the model approached convergence. To mitigate overfitting,
dropout regularization was applied within both convolutional and fully connected layers (with rates
of 0.25 and 0.5, respectively). Additionially, training samples were randomly shuffled during each
epoch to enhance generalization performance.

This comprehensive training strategy ensured stable convergence and effective learning of
discriminative features while maintaining computational efficiency within the CPU-based
environment.

3.2. Comparative Experimental Results

We further tested the effectiveness of our models by running comparative experiments with LSTM,
CNN-LSTM, and CNN-GRU architectures. The results are shown in Table 1. The baseline LSTM
reached an accuracy of 0.8418. It achieved a precision of 0.7988, a recall of 0.8707, an F1 score of
0.8322, and an AUC of 0.9182. While the performance was reasonable, the model lacked the strength
of architectures that include convolutional feature extraction. The CNN-LSTM showed a clear
improvement. It achieved an accuracy of 0.9112, a precision of 0.9055, a recall of 0.9127, an F1 score
of 0.9090, and an AUC of 0.9835. These results suggest that adding convolutional layers before the
LSTM provided stronger feature representations. This enhancement made sequence modeling more
effective (See Figure 3).

Among the three models, CNN-GRU achieved the best performance, with an accuracy of 0.9240,
precision of 0.9285, recall of 0.9240, F1 score of 0.9242, and an AUC of 0.9910. This suggests that
GRU not only reduces computational complexity compared to LSTM but also captures temporal
dependencies more efficiently in this task. The confusion matrix of the binary classification is shown
in Figure 4.
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Figure 3 ROC curve of the binary classification model.

Figure 4 Confusion matrix of the binary classification between hardcore and metal genres.
Table 1 Comparative Experimental Results

Method Accuracy Precision Recall F1 Score AUC
LSTM 0.8418 0.7988 0.8707 0.8322 0.9182
CNN-LSTM 0.9112 0.9055 0.9127 0.9090 0.9835
CNN-GRU 0.9240 0.9285 0.9240 0.9242 0.9910

3.3. Feature Space Visualization with t-SNE

To further investigate the model’s discriminative capability in the feature space and analyze the
representational differences between extreme music genres across different eras, we employed t-SNE
(t-distributed Stochastic Neighbor Embedding) for dimensionality reduction and visualization. T-
SNE is a nonlinear dimensionality reduction technique that projects high-dimensional data into two
or three-dimensional space by minimizing the divergence between probability distributions of sample
pairs in both high and low dimensional spaces, thereby preserving local neighborhood structures.

Specifically, let the feature representation extracted by the CNN-GRU model for each sample be
denoted as hi € R%, where d represents the high-dimensional feature dimension (this study
employees the final hidden state of the bidirectional GRU as the feature vector). t-SNE first defines
the similarity between sample i and sample j in the high-dimensional space as:

( Il hi — hj ||2)
exp|—————"—

20}

| hi — hk IIZ)'

20}

pjli =
Yk # iexp (—

where o; is the Gasussian kernel bandwidth for sample i , determined through binary search to
satisfy a given perplexity value. The symmetric high-dimensional probability is then defined as:
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i pjli + pilj
Py 2n '
where n is the total number of samples.

In the low-dimensional space (two-dimensional in this study), the similarity is defined using a
Student-t distribution:

o QHlyi-yiyT
W= Sk 1A+ yk—yl 1)
where yi € R? represnets the embedded vector of sample i in the low-dimensional space. T-

SNE minimizes the Kullback-Leibler divergence between the high-dimensional and low-dimensional
similarity distribution:

I 1

Lt — SNE = )i # jpijlog—.

qij

In the experiments, this study performed dimensionality reduction and projection of feature vectors

for both different eras and different genres (Metal vs. Hardcore). The former analysis aimed to

observe feature drift of works within the same genre across different eras, reflecting the influence of

production techniques, recording technology, or performance style evolution on model features. The

latter analysis validated the model’s separability between the two genres in the feature space. In the

visualizations, samples from different eras were encoded using color gradients, while samples from

different genres were marked with distinct colors, providing an intuitive representation of cluster
boundaries and temporal feature migration trajectories.

4. Conclusion

This study tackled the common problem of misclassifying Metal and Hardcore. We built a fine-
grained classification framework designed for extreme music. The framework used a hybrid CNN-
GRU model. The CNN captured local spectrotemporal features. The GRU modeled long-term
rhythmic dynamics. Together, they enabled stronger separation between the two closely related
genres. We trained the model on 216 tracks collected from 1980 to 2020. The model reached 92.40%
accuracy. It clearly outperformed traditional machine learning methods and single deep learning
baselines. We also analyzed how features drifted across different eras and genres. The results showed
meaningful trends in temporal evolution and cross-genre hybridization. These insights reveal how
extreme music has changed and blended over time. Our findings show that deep learning can push
Music Information Retrieval forward. It can make classification fairer. It can improve
recommendation accuracy. It can also give researchers a deeper look into genre dynamics in extreme
music.

References
[1] V. Tsatsishvili, Automatic Subgenre Classification of Heavy Metal Music, Master’ s thesis,
University of Jyvakyl& Jyvakyld Finland, Nov. 2011.

[2] Kowald D, Schedl M, Lex E. The unfairness of popularity bias in music recommendation: A
reproducibility study[C]//European conference on information retrieval. Cham: Springer
International Publishing, 2020: 35-42.

[3] Kennedy L. The symbiotic relationship between metal and hardcore in the 21st century[J]. Proc.
of Modern Heavy Metal: Markets, Practices and Cultures, Helsinki, Finland. Helsinki: MHMC, 2015:
424-432.

[4] Tzanetakis G, Cook P. Musical genre classification of audio signals[J]. IEEE Transactions on
speech and audio processing, 2002, 10(5): 293-302.

199



[5] C. N. SillaJr., A. L. Koerich and C. A. A. Kaestner, "Feature Selection in Automatic Music Genre
Classification,"” 2008 Tenth IEEE International Symposium on Multimedia, Berkeley, CA, USA, 2008,
pp. 39-44, doi: 10.1109/ISM.2008.54.

[6] E. Scheirer and M. Slaney, "Construction and evaluation of a robust multifeature speech/music
discriminator,” 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing,
Munich, Germany, 1997, pp. 1331-1334 vol.2, doi: 10.1109/ICASSP.1997.596192.

[7] Choi, K., Fazekas, G., Sandler, M., & Cho, K. (2017). Convolutional recurrent neural networks
for music classification. 2017 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2017, pp. 2392-2396, doi: 10.48550/arXiv.1609.04243.

[8] X. Luo, “Automatic Music Genre Classification based on CNN and LSTM”, HSET, vol. 39, pp.
61-66, Apr. 2023, doi: 10.54097/hset.v39i.6494.

[9] M. Ashraf, F. Abid, M. Atif, and S. Bashir, “The Role of CNN and RNN in the Classification of
Audio Music Genres”, VFAST trans. softw. eng., vol. 10, no. 2, pp. 149-154, Jun. 2022.

[10] Feng, L., Liu, S., & Yao, J. (2017). Music genre classification with paralleling recurrent
convolutional neural network. 2017 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2017, pp. 2392-2396, doi: 10.48550/arXiv.1712.08370.

[11] Xu, Wenyi. "Music genre classification using deep learning: a comparative analysis of CNNs
and RNNs", Applied Mathematics and Nonlinear Sciences, vol. 9, no. 1, Sciendo, 2024, doi:
10.2478/amns-2024-3309

[12] Zhang, J. (2023). Music genre classification with ResNet and Bi-GRU using visual spectrograms.
arXiv preprint arXiv:2307.10773, doi: 10.48550/arXiv.2307.10773.

200


https://doi.org/10.2478/amns-2024-3309
https://doi.org/10.2478/amns-2024-3309



